
Failure Control in Multipath Route Tracing
Darryl Veitch∗, Brice Augustin†, Renata Teixeira†, and Timur Friedman†

∗ARC Special Centre for Ultra-Broadband Information Networks (CUBIN), an affiliated program of
National ICT Australia (NICTA), The University of Melbourne, Australia. dveitch@unimelb.edu.au

†UPMC Paris Universitas (Univ Paris 06) and CNRS, LIP6 Laboratory, Paris, France.
brice.augustin@lip6.fr, renata.teixeira@lip6.fr, timur.friedman@lip6.fr

Abstract—Traceroute is widely used to report the path packets
take between two internet hosts, but the widespread deployment
of load balancing routers breaks a basic assumption – that there
is only a single such path. We specify an adaptive, stochastic
probing algorithm, the Multipath Detection Algorithm (MDA),
to report all paths that probes can follow between a source and
a destination. We establish the foundations of, and show how
to calculate, rigorous statistical guarantees for the discovery of
the entire multipath route. We explore algorithm cost/guarantee
tradeoffs in real experiments and show the inadequacy of the
classic practice of sending three probes per hop.

I. INTRODUCTION

Traceroute [10] is widely used for diagnosing network
problems and to assemble internet maps. It discovers the
route between two machines by issuing a series of probes
with increasing time-to-live (TTL) values from a source to
a destination. Unfortunately, traceroute measurements can be
inaccurate and incomplete when the measured route traverses
a load balancing router, or load balancer [1]. Consider the
example of a multipath route between hosts S and T in Fig. 1,
where L is a load balancer. If the traceroute probes with
TTL=2 take the upper path and the probes with TTL=3 take
the lower one then traceroute will report the existence of a
false link between A and D. Alternatively, the probes might
all follow the same path and traceroute would report only one
path between S and T , when there are in fact two.

Two types of load balancers cause problems with traceroute.
Per-flow load balancers are widespread [2]: they ascribe each
packet to a flow defined by a flow identifier, which is the
header five-tuple (i.e., IP source and destination addresses,
source and destination ports, and protocol), and each flow
to an outgoing interface. Per-packet load balancers are much
rarer [2]: they assign packets to interfaces regardless of flow.
A new traceroute implementation called Paris traceroute [1]
maintains a constant flow identifier in all the probes it sends
and hence solves the problem of inferring false links under per-
flow load balancing. With Paris traceroute one can accurately

T

B

E

S

A C

L

D

Fig. 1. A multipath route between S and T , created by a load balancer L.

trace the single path that a single flow takes from a source to a
destination. However, to merely trace a single path from source
to destination is to miss the coexistence of several paths.

Our work provides, for the first time, a tool capable of
systematically finding the entire set of load-balanced paths that
probes can follow in the presence of per-flow load balancing.
We make a number of contributions:
(1) A formal model of multipath route discovery. Sec. II

presents a graph-based model of the problem of multipath
route discovery, which we use to analyze the probability
that a discovery algorithm will find all nodes and links
that probes can encounter along a multipath route. We
provide a rigorous derivation of significance levels for
finding an individual node’s successor nodes, go beyond
significance levels to the more important failure probabili-
ties and how they may be controlled, and extend statistical
node guarantees to path level guarantees.

(2) The Multipath Detection Algorithm (MDA). Sec. III
provides an extension to Paris traceroute called the MDA,
a stochastic probing algorithm that adapts the number of
probes to send on a hop-by-hop basis in order to enumer-
ate all reachable interfaces at each hop. The number of
probes required by the MDA is a function of a tunable
parameter, which is an upper bound on the probability of
failing to discover the entire explorable multipath route,
or multipath. Upon completion, the MDA yields a level of
confidence in its result. The MDA also has mechanisms
to deal with unresponsive routers and for identifying per-
packet load balancers and routing changes.

(3) An experimental evaluation of the trade-off between
strong guarantees and low probing overhead. Our
statistical guarantees are based on very conservative,
worst case assumptions, such as a load balancer at every
hop. We perform experiments to explore the trade-off
between overhead and actual success rates of MDA in
a real world environment. Sec. IV describes experiments
and Sec. V reports findings showing that even a 50%
success probability bound is sufficient to find all the
discoverable routes for more than 90% of multipath routes
in our traces. On the other hand we find that the classic
traceroute practice of sending three probes per hop falls
well short of what is needed to obtain even modest
confidence of finding the entire multipath.

In so doing, we correct and significantly extend a prelimi-

nary workshop paper that described an initial version of the
MDA [3], as described in Sec. VI.

Our work puts traceroute on a solid analytic footing for
the first time, showing how rigorous statistical guarantees
can be engineered, and clearly demonstrating that standard
traceroute practices are inadequate. By providing the MDA,
an adaptive probing algorithm that regulates the number of
probes according to the interfaces discovered at each hop, we
give traceroute users more control and information to decide
on the probing overhead they are willing to incur and the
completeness of the multipath routes that will result.

II. MODELING ROUTE DISCOVERY

This section provides a formal graph-based model for route
discovery, and analyzes its statistical properties. The model is
based upon certain assumptions about ideal network behavior.
Sec. III develops this into an algorithm that takes into account
the constraints of conducting traceroute style route probing in
a real-world network.

A. Formal Model

We model a multipath route from a source IP address s to
a destination IP address d, d 6= s, as a directed graph G =
(V,E). V is a set of vertices, or nodes, consisting of s, d
and the IP addresses of the ingress interfaces of the routers
along each of the paths from s to d. E is a set of edges,
where an edge (v1, v2), v1, v2 ∈ V , exists if and only if v2

is encountered immediately following v1 on at least one path
from s to d. We assume about G: that the in-degree of s
and the out-degree of d are both zero; and that for any node
v ∈ V \ {s, d} there exists at least one path from s to v and
at least one path in G from v to d. G may contain loops.

In the above, we assumed that: (1) No routing changes
during the discovery process.

G is unknown to the experimenter. The goal of our multipath
route tracing is to discover G. We consider discovery to be a
success only if all elements of V and E have been found (this
analysis does not treat partial discovery).

We model the discovery process as the incremental con-
struction of a graph Ĝ = (V̂ , Ê) starting with the initial
graph Ĝ0 = ({s}, ∅). Discovery is guided by a set of nodes
on the frontier of exploration, which we call the open set or
Ω. Initially, Ω = {s}, and nodes are added to and removed
from Ω as described below. Discovery is successful if, upon
reaching the stopping condition Ω = ∅, Ĝ = G.

Discovery proceeds by choosing a node from the open set,
v ∈ Ω, it does not matter which one, and employing a per-node
discovery process described below to attempt to enumerate its
set of successor nodes, σ(v) = {v′ ∈ V : (v, v′) ∈ E}. This
returns a nonempty set Cv ⊆ σ(v) of discovered successor
nodes. For each discovered successor node c ∈ Cv , if it is new
then we add it to the list of nodes in our discovered graph:
c /∈ V̂ ⇒ V̂ ← V̂ ∪{c}. If it is new and it is not the destination
then we add it to the open set as well: (c /∈ V̂ ∧ c 6= d) ⇒
Ω← Ω∪{c}. Whether or not c is new, since we only perform
the per-node discovery process once per node, the edge (v, c)

is necessarily new, so we add it to Ê: Ê ← Ê ∪ {(v, c)}.
Having done this for each successor node c ∈ Cv , we remove
node v from the open set: Ω← Ω\{v}. Discovery terminates
when the open set is empty: Ω = ∅.

As mentioned above, per-node discovery consists in at-
tempting to enumerate the successor nodes σ(v) for a node
v. This is done through a series of experiments. Each trial
involves a probe packet that we have determined will pass
through v, and sending it one hop beyond v to see what is
returned. We model the result xi of each trial i as a sample
from a random variable Xv,i that is uniformly distributed
across the successor nodes c ∈ σ(v). The random variables
Xv,i are independent and identically distributed for all i.

In the above, we have exploited the following additional
assumptions about the network: (2) There is no per-packet load
balancing. (As a result, we can manipulate a probe packet’s
flow identifier to cause it to pass through a chosen node.) (3)
Load balancing is uniform-at-random across successor nodes.
(4) All probes receive a response. (5) The effect of sending one
probe packet has no bearing on the result of any subsequent
probe. In particular, load balancers act independently.

Per-node discovery terminates on the basis of a stopping
rule that caps the number of trials that can be conducted at a
node. This number depends upon the number k of successor
nodes that have been discovered so far. For each possible value
k = 1, 2, . . . (theoretically without bound, but under current
network configuration practice bounded by k = 16), trials stop
when i = nk where nk is the integer-valued stopping point
for k. Note that the stopping point cannot be smaller than the
number of successor nodes already discovered: nk > k. For
self consistency it makes sense to assume nk+1 > nk.

Based upon the model above it is easy to show that: route
discovery is guaranteed to terminate; upon termination there
will be at least one path in the graph Ĝ from the source s to
the destination d; for any node v ∈ V̂ \ {s, d} there exists at
least one path from s to v and at least one path from v to d.

B. Success and Failure Probabilities

For any given fixed multipath route or graph, we can
define the discovery failure probability, namely the probability
Pr(Ĝ 6= G) that at least one path from source to destina-
tion has been missed by the discovery algorithm. Naturally,
discovery success corresponds to all paths being found. This
section gives expressions for the failure probabilities both for
full-graph and single-node discovery. These allow algorithm
performance to be explored over different topologies, and
conversely, it enables the design of parameter settings to
guarantee a given target performance for any topology of
particular interest, such as the very common ones.

Consider the failure probability βall for graph discovery.
The only parameter of a node vi which influences its failure
probability βKi

is the number Ki = |σ(vi)| of its successor
nodes. Since the algorithm works independently at each node,
the graph discovery success probability is simply the product

1

2

3

K

1 2 3 4 i

4
k

n4n3n2n1 nK

Fig. 2. State space for a node with K successor nodes. State (i, k) means
k nodes discovered after i probes. Two algorithm paths are given: successful
discovery stopping at (nK , K), and discovery failure stopping at (n3, 3).

of success probabilities over all nodes, so that

βall = 1−
∏

i

(1− βKi
). (1)

We now consider the failure probability βK for a single
node (dropping the index i). Failure will occur whenever the
algorithm concludes that there are less than K successors:

β1 = 0

βK =
K−1∑
k=1

tkK , K > 1 (2)

where tkK is the stopping probability at level k, the probability
that the algorithm terminates having discovered k of the K
successors. Since clearly

∑K
k=1 tkK = 1, the success probabil-

ity is simply tKK = 1 − βK . The stopping probabilities are a
function of K and the set of stopping points {nk} only.

To better visualize the operation of the node discovery
algorithm, Fig. 2 gives its state space, where state (i, k)
corresponds to k successor nodes being known after i trials.
Beginning at state (0, 0), paths move to the right with each
probe, and upward as successor nodes are discovered, until
reaching one of the K stopping states (nk, k), i 6 k 6 K.
Discovery success corresponds to paths which terminate at
the state (nK ,K), and discovery failure to any of the other
stopping states.

The probabilities governing state transitions are as follows.
If 0 6 k 6 K successor nodes have been discovered so far,
then the probability that a new one will be found on the next
attempt is just qk = (K−k)/K, and pk = 1−qk = k/K is the
probability of remaining at k. These transition probabilities are
independent of the trial i, with the exception that transitions
out of stopping states are of course disallowed, and the
transition from (0, 0) to (1, 1) has probability one.

We can now calculate the stopping probabilities. One
method is to first initialize the ‘visitation’ probabilities over
the state space as Pr((0, 0)) = 1 and otherwise zero, and
then, beginning at (0, 0), to use the transition probabilities
to recursively calculate them over all states. The visitation
probabilities of the termination states are precisely the desired
stopping probabilities. It is instructive however to explicitly
enumerate the possible paths to each termination state.

There is only one path from (1, 1) to (n1, 1), and so

t1K = pn1−1
1 .

To reach (n2, 2) from (1, 1), we first make j1 ‘horizontal’
transitions at level k = 1, then discover a second successor
node, then make the remaining transitions at k = 2:

t2K =
n1−2∑
j1=0

pj1
1 q1 pn2−2−j1

2 .

For (n3, 3), we must also keep track of the number of
transitions j2 at level k = 2 (see the example path in Fig. 2
with (j1, j2) = (3, 1)), yielding

tkK =
n1−2∑
j1=0

n2−2−j1∑
j2=0

pj1
1 q1 pj2

2 q2 pn3−3−j1−j2
3 .

It is easy to see that the general form is

tkK =
n1−2∑
j1=0

n2−2−j1∑
j2=0

· · ·
nk−1−2−Jk−2∑

jk−1=0

(k−1∏
i=1

pji

i qi

)
p

nk−k−Jk−1
k

(3)
where Ji =

∑i
k=1 jk.

The stopping probabilities tkK are unconditional, based on
starting the algorithm at state (0, 0). However, it is natural
to ask what they would become, conditional on j successors
having already been discovered. This is easily calculated as:

tkK,j = Pr(stop at level k | didn’t stop at levels below j)

=
Pr(stop at level k)

Pr(didn’t stop at levels below j)
=

tkK∑K
l=j tlK

(4)

for k > j and zero otherwise. Note that tkK,1 = tkK since
finding at least one interface is certain. The corresponding
conditional failure probability, 1 6 j 6 K, is

βK,K = 0

βK,j =
K−1∑
k=1

tkK,j =
K−1∑
k=j

tkK,j =

∑K−1
k=j tkK∑K
l=j tlK

, j < K,(5)

and naturally βK,1 = βK .

C. Significance Levels

Since the failure probability is a function of the actual
multipath graph, which of course is unknown to any discovery
algorithm, it unfortunately cannot be calculated by the algo-
rithm itself. However, it is clearly important that the algorithm
attempt to control its error, by estimating or bounding its
failure probability based on its own observations. A natural
framework for this is that of hypothesis testing.

We first consider the case of node discovery. Assume that
there are K successor nodes, of which k, 1 6 k 6 K, have
been discovered so far. The algorithm’s role is to give up the
search for new ones only if it is very unlikely that there are
more it has failed to find. This corresponds to controlling the
significance level αk of a test for additional interfaces. Namely,
αk gives the probability of stopping at the state (nk, k) and
thereby failing to find new successors (a type-I error), given
that k have already been found, under the null hypothesis that
there are in fact K ′ > k of them.

The above hypothesis is composite, meaning it is a collec-
tion {H∅

K′ ,K ′ > k} of separate simple null hypotheses, such
as the hypothesis H∅

K′ that there are precisely K ′ successors.
The significance level of a composite null hypothesis is the
largest of the significance levels of each of its simple compo-
nents [14]. Now let pk,K′ = k/K ′ be the transition probability
to stay at level k on the next trial based on H∅

K′ . Because the
probability of remaining within level k and moving toward
stopping at (nk, k) is controlled by pk,K′ , which is larger for
smaller K ′, the largest simple significance level, and therefore
αk for the composite hypothesis itself, is equal to that of H∅

K′

with K ′ = k + 1. By stopping at (nk, k) we are rejecting
H∅

K′ and accepting the alternate hypothesis that K ′ = k. This
is a simple hypothesis which has in fact optimal power: the
probability of a type-II error is zero, since if k = K ′ = K, it
is not possible to find more successors.

We can now evaluate αk. Under H∅
k+1, from (4) the

conditional probability of stopping at level k is just

αk = tkk+1,k =
tkk+1

tkk+1 + tk+1
k+1

, 1 6 k 6 K. (6)

In the special case where k = K − 1 successors have been
found, the algorithm uses H∅

K′ with K ′ = K, and therefore
αK−1 = tK−1

K,K−1 = βK,K−1 from (5). That is, the algorithm’s
own bound on the probability of missing successors, αk, is
actually equal to the objective view of an oracle who knows the
true conditional probability of failure, given that k successors
have been discovered already. If k = K then αK > βK,K = 0
and the algorithm is conservative. However, if k < K − 1,
simple counter-examples can readily be found to show that
the algorithm can underestimate the true error. For example
take K = 3 and k = 1. If (n1, n2, n3) = (2, 30, 30) then
α1 > β3,1, but if (n1, n2, n3) = (2, 3, 4) we find α1 < β3,1.

D. Bounding Failure Probabilities

Significance levels provide a rigorous way to evaluate the
confidence one has in the decision to stop and declare that
all interfaces have been found. However, we have just seen
that αk < βK,k does not necessarily hold, which is clearly
undesirable as it implies that the actual error probability (βK,k)
may be larger than the one believed by the algorithm and
reported to the user (αk). However, the above analysis was
for a stopping set {nk} which was arbitrarily chosen. We
now ask the question, can we show that αk > βK,k for all
k provided the algorithm selects the {nk} appropriately? It
is again easy to prove by counter-example (K = 3, k = 1,
α = 0.16, (n1, n2, n3) = (4, 7, 7)) that this does not hold
if we set αk = α for all k, the simplest choice. We now
give a more nuanced choice that aims to achieve something
different and more useful instead: a universal bound on the
failure probability.

As described above, (6) was derived under H∅
K′ with K ′ =

k+1 because that gave the largest αk. Therefore, for K ′ = K

αk > tkK,k > tkK

since conditioning increases probability. Using this in the
numerator of (5) we obtain the bound

βK,k 6 βK,1 =
K−1∑
l=1

tlK 6
K−1∑
l=1

αl. (7)

where the first inequality follows from the fact that f(x) =
x/(a+x), a, x > 0, is increasing (set a = tKK). If for example
all the significance levels were equal, then this bound grows
linearly with K, which is not useful when K is unknown! To
obtain a bound that is independent of K and so can be used
by the algorithm, we set

αk = α1r
k−1 (8)

where 0 < r < 1, which geometrically reduces the signifi-
cance levels as k increases. Continuing on from (7):

βK,k 6
K−1∑
l=1

αl <
α1

1− r
. (9)

To adhere to some target failure probability β∗, we can for
example fix a convenient α1, and then select r = 1− α1/β∗,
or alternatively select r and set α1 = (1 − r)β∗. Either way,
the resulting target significance levels {αk} will guarantee that
βK,k < β∗ for all k, regardless of the true (unknown) K.

We do not expect the above bound to be tight. For example
whilst β∗ > α1, we already know that in the case of nodes
with K = 2 the algorithm will achieve the smaller failure
probability of β2,1 = β2 = α1 = t12 = 2−(n1−1). It is
possible in fact to choose the {αk} larger, however it remains
an open question whether there exist schemes which can, for
example, provide αk > βK,k for all k when K > 2. A related
open question is how to optimize performance in terms of
minimizing the number of trials for a fixed failure probability.

We can define a notion of graph level bounds on failure
probability following the example of (1):

β∗
all = 1−

∏
i

(1− β∗
ki

) (10)

provided we know the total number of nodes. If we don’t know
but can bound this number, then the RHS of (10) becomes a
bound on the graph level failure probability.

E. Summary of Statistical Guarantees

We summarize the above ‘statistical guarantees’ to path dis-
covery, and compare them to those of our workshop paper [3].

Node significance levels. In the workshop paper [3],

αnode = (k + 1)−nk

k∑
j=0

(
k + 1

j

)
jnk(−1)k−j (11)

was used, an approximate significance level assuming K ′ =
k+1 successors which ignores the stopping points below level
k (i.e., is biased), and includes events at levels k < K ′ rather
than at k = K ′ − 1 only (is not conditional). In contrast, we
now use (6), which is both conditional and exact.

Failure probabilities, and their control. In [3], the quality
of a stopping decision was expressed in terms of αnode only,
with no discussion of failure probabilities. We have introduced
the conditional failure probabilities {βK,k} as the appropriate
measure when the topology is known, and also shown how to
bound them ‘universally’, that is when K is unknown.

Options for node statistical guarantees. The {nk} determine
algorithm performance, and can be selected in one of two
ways: significance levels, or failure probabilities. In the former
case, a single significance level αk = αnode is used for each
node and there is no ability to control or even report failure
probabilities. In the latter case, actual failure probabilities
can be specified and achieved to ensure performance for a
given target K, or alternatively, a single parameter β∗ can be
used to bound all failure probabilities for arbitrary unknown
K, which is more comprehensive but more expensive. When
controlling failure probabilities, the significance levels are still
meaningful, known, and can also be reported. However, they
are no longer central, but merely a means to ensure the failure
targets (and they now vary with k).

Graph level error reporting and control. In [3], stopping
decisions only had guarantees at the node level. We have
introduced a meaningful means of reporting a graph level
guarantee via (1) when the topology is known, and via (10)
when it is not (provided we bound the number of nodes).

III. MULTIPATH DETECTION ALGORITHM

The previous section described an idealized model we used
to build our path discovery algorithm and to understand
its operation statistically. This section presents the MDA,
a traceroute-like probing algorithm inspired by the formal
model, capable of building the full set of discoverable multi-
path routes between two internet hosts.

A. From Model to Real World

Although the network abstractions of the formal model are
well motivated, they do not always hold in real networks at all
nodes. Here we introduce the differences, and the adaptations
we propose to circumvent them or to limit their impact.

Per-hop enumeration. The model allows the algorithm to
tackle nodes on the open list in any order. However, traceroute
works hop by hop, and prints real time output as it discovers
new interfaces. The MDA hews to this mode of operation.

Fig. 3 illustrates the technique and introduces some notation.
Let Rh be the set of all interfaces reachable at hop h when
tracing towards a given destination. Suppose we have already
built R̂h−1, our estimate for the set of interfaces at the previous
hop. To build R̂h, we enumerate the successors c of each
interface v ∈ R̂h−1. If v is the interface of a load balancer,
there will be multiple successors. We call the set of successors
of v the nexthops of v and denote this as Cv . The union of
nexthops for Rh−1 is Rh. Below, we describe our method for
enumerating nexthops with statistical guarantees.

The MDA proceeds hop by hop, and explores the IP-level
graph by enumerating the nexthop interfaces of each interface

v c

Rh-1 Rh

Cv

Hop h-1 Hop h

Fig. 3. Per-hop enumeration.

discovered, until probing reaches the destination along all
paths. During the exploration, it labels each interface with
its representative flows, whenever possible. This hop-by-hop
exploration is equivalent to the one used in the model, the only
differences being that we specify a certain order in which to
visit the nodes and we also may search for nexthops from a
node more than once if that node is found at more than one
hop count (in each case, we will be visiting that node using a
different set of flow identifiers). We can easily derive the graph
from the flow-labeled nodes, by creating a link (v, c) for every
pair of interfaces v and c that are at consecutive hop counts
and that share a common flow identifier. In so doing, we go
beyond the basic goal of discovering the graph, to labeling the
nodes with flow information, as well as load balancing type.
Node access. Another difference with the model is the way we
access a node whose successors we wish to enumerate. With
traceroute-like measurements, this requires an additional effort
in order to ensure that the packets with a given flow identifier
actually go through the target node. Let us illustrate this
problem with Fig. 3. If one wishes to discover the successors
of v, one must first generate a sufficient number of flow
identifiers that cause probes to reach v at hop h−1. The only
way to do so is by trial and error, generating flow identifiers
with port numbers chosen at random. In so doing, we discover
flow identifiers that cause probes to reach other nodes in Rh−1,
which may or may not be useful.
Non-responses. The failure of routers to respond to probe
packets is another network characteristic our model ignores.
Unlike classic traceroute probing, which does not try to
address this problem, in our case it is crucial to continue to
obtain responses since the stopping points {nk} have been
calibrated to achieve particular statistical guarantees. There are
various causes for non-responses. Some, such as anonymous
routers [19] have no countermeasure. The MDA handles other
causes of non-responses, such as ICMP rate limiting and
packet loss, with a timeout-based retransmission mechanism.
Per-packet or non-uniform load balancing. Our model
assumes per-flow load balancing, performed uniformly across
successor nodes. Although per-packet and non-uniform load
balancing are considerably less common, they also exist in
the internet [2], Under per-packet load balancing, we have as
yet no way to control the path that packets take. The algorithm
must therefore identify cases of per-packet load balancing
where they exist, which requires additional probing overhead.

2 4 6 8 10 12 14 16
0

0.2

0.4

k

α
(k

)
 %

target α
actual α

Fig. 4. Significance levels corresponding to {nk} from Table I.

Under non-uniform load balancers, the MDA may miss links
in the paths that packets take less often.
Node revisiting. Under our model, we do not attempt to
enumerate the successors of any given node more than once.
However, given the hop-by-hop approach, and the fact that
the same node might be reached at different hop counts with
different flow identifiers, the MDA attempts to enumerate the
successors to every node encountered at a given hop count,
whether they have been visited before or not. The consequence
for (1) is that a second attempt at finding its successors
improves the chance of success, leading to

βall 6 1−
∏

i

(1− βKi
). (12)

In this case, global effects boost the efforts of local action.
Topology changes. Our model also supposes that routes re-
main stable during measurement. However, the probing of the
entire multipath to a destination can take dozens of seconds,
sometimes more, increasing the risk of topology change.

B. Implementing Statistical Guarantees

Since the algorithm’s operation (both now and in [3])
is based on the stopping points {nk}, at the node level
implementing the statistical guarantees reduces simply to
implementing different choices for how these are calculated.
Given the input parameter controlling the statistical guarantee,
αnode or β∗, the {nk} can easily be precalculated in advance
of sending probes. Note that because the {nk} take discrete
values, in practice instead of the target significance levels {αk}
we end up with the set {αk} of actual significance levels.
These are ‘safer,’ i.e., the largest possible where αk ≤ αk.

Whereas in [3], the {nk} were chosen to ensure that
αk ≤ αnode for each k, here we use (8) to first select a set
{αk} according to a choice of β∗, and then select the smallest
{nk} which can achieve them. This is straightforward to do
recursively since αk is a function of the {nj , j = 1, . . . k +1}
only. Table I gives an example based on β∗ = 0.05 (with
r = 0.9), generated from target significance levels given in
Fig. 4. Note that the largest conditional failure probability over
all k for each K ≤ 16 using these {nk} is 0.0041, which is
below β∗ = 0.05 as claimed, and well below, as expected.

k 1 2 3 4 5 6 7 8 9
nk 9 17 24 33 42 51 60 70 81
k 10 11 12 13 14 15 16
nk 91 102 113 125 136 148 161

TABLE I
NUMBER OF PROBES nk NEEDED TO BOUND ALL (CONDITIONAL)
FAILURE PROBABILITIES FOR ANY K AT A NODE BY β∗ = 0.05.

Finally, when using failure control via β∗ the implemen-
tation now takes an option to control this via a graph level
parameter β∗

all, calculated as described in Sec. II-D. We used
a bound of 30 for the node count of the multipath route. Based
on real traces [2], this holds for 99.8% of multipath routes.

IV. MEASUREMENT METHODOLOGY

The preceding section describes how to determine the
number of probes the MDA must send at each hop in order to
bound its failure probability. This bound is based on minimal
assumptions about the actual topology of a multipath route.
Since the network might diverge from these assumptions, we
ask how tight the bound is in reality. This section describes the
experiments we designed to obtain answers to this and other
questions about the MDA’s performance.

To determine if the MDA has failed for a given route
requires a ‘ground truth’. This is a multipath route that we
know, to a high degree of certainty, represents everything
that traceroute could possibly discover when probing from
the route’s source to its destination. Ideally, we would obtain
this ground truth from network operators themselves. However,
it is impossible to obtain all such topologies, and even then
there would be no guarantee that some exotic router behavior
would go unreported. We set a different standard for failure:
the MDA only fails if additional probing could have yielded
more information about a multipath route. We do not consider
it a failure, for instance, if the MDA leaves a link unrevealed
that is not actively being used for routing. Similarly, we do not
consider it a failure if the MDA leaves unrevealed a series of
links that are hidden by an MPLS tunnel. Our concern here is
with the capabilities of traceroute-style probing. Therefore, we
obtain a ‘baseline’ topology using the MDA itself, by setting
an extremely strict bound on the failure probability (we used
β∗

all = 2−7) that makes it very unlikely that there exist undis-
covered paths. Although not perfect, this approach provides
well defined performance calibration for failure probabilities
above the baseline threshold.

Having established the ground truth by sending the very
high numbers of packets required by a very strict bound, we
want to compare the outcomes for more reasonable bounds.
We can do so without reprobing. Our initial trace serves as
a reference, from which we emulate the MDA outcome for a
smaller number of probes by sub-sampling. We also compare
the outcome for classic traceroute’s standard of three probes
per hop by replaying just the first three probes for each hop in
the reference trace. In our experiments, we emulated the out-
comes for failure probability bounds of β∗

all = 0.01, 0.05, 0.25,
and 0.50, as well as for the classic three probes per hop.

We launch all measurements to the same destination close
in time, to minimize the chances of routing changes between
measurements. We use UDP probes for all our experiments
and set the maximum TTL to 36. We set the retransmission
timeout to 2 seconds and the interval between probes to 50 ms
and stop tracing a destination after 3 consecutive unresponsive
hops, to accelerate the measurements.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

C
D

F
 o

f r
ou

te
s

w
ith

 lo
ad

 b
al

an
ci

ng
0.01
0.05
0.25
0.50

classic

0.95

1

 1 10

Fig. 5. Links undiscovered by the MDA (log scale), with various bounds
β∗all (zoom in the bottom right corner), and by classic traceroute.

V. EVALUATION

This section studies the MDA’s performance on 5,000
routes, located between a source at UPMC Paris Universitas
and 5,000 randomly-selected IP addresses that respond to
pings. Since they are limited to one source, these experiments
do not provide universal guidelines for trading-off strict failure
bounds against overhead. Load balancing affects each location
to a different degree. In a previous measurement study [2],
the portion of source-destination pairs affected by per-flow
load balancing varied between 23% and 80%, depending upon
which of 15 sources in the US and Europe we used. We chose
the Paris source because its portion lies in the middle (varying
between 38% and 44% from round to round). We repeated
each round of measurements four times during a three-week
period. The results are equivalent across rounds; hence we
report the results for one round.

These experiments provide a procedure that others can
easily follow to calibrate their particular usage of the MDA.
In addition to experiencing their own location-dependent con-
ditions, each user will have their own particular tolerance for
overhead, and intolerance to multipath route discovery failure.

A. Links Undiscovered

Fig. 5 gives us a rich picture of multipath route discovery
failure by looking at the extent of failure when it occurs.
The graph is a CDF of the number of links (shown in log
scale) that the discovery algorithm fails to find. There is one
curve for each failure probability bound β∗

all and one curve
for the classic traceroute approach of sending three probes
per hop. Of the 5,000 routes traced, only 2,205 (44%) provide
opportunities for failure because they traverse a load balancer,
and so Fig. 5 is based only on those routes.

Here we see the clear inadequacy of the classic three-
probes-per-hop approach: it misses at least 1 link for 84% of
the multipath routes, more than 10 links in 25% of cases, and
in nine extreme cases, misses more than 40 links! In contrast,
adaptive probing with the MDA provides routes that are close
to complete even when the failure bounds are not strict. For
instance, with β∗

all = 0.50 it finds all links 94% of the time.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 500 1000

C
D

F
 o

f r
ou

te
s

0.01
0.05
0.25
0.50

classic

Fig. 6. Packet overhead for the MDA, with various bounds β∗all, and for
classic traceroute.

This leads us to our second conclusion, which is that
the failure bounds are quite loose. There is a high rate of
complete success, which can be explained by the conservative
assumptions that go into calculating the bounds: that a multi-
path consists of 30 nodes, and that every node represents an
opportunity for failure. In our experience [2], there tend to be
just one or two divergence points on paths that encounter load
balancing, and so just one or two true opportunities for failure.

Even when there is failure, the MDA tends to miss only a
small number of links. This can be explained by the fact that
most instances of load balancing split packets across just two
or three paths and load-balanced paths tend to have lengths
of just two or three hops [2], so there tend to be few links
to miss. The advantage of the MDA’s adaptive approach to
probing becomes abundantly clear in those rare cases where
there are many load-balanced links to miss. By continuing
to send more and more packets to a given hop as more an
more interfaces are discovered, the MDA keeps the number
of undiscovered links low.

The data show one case in which the bound is not tight: for
β∗

all = 0.01, the MDA succeeded completely in only 96.9%
of cases, instead of 100 · (1 − 0.01)% = 99% or better. We
believe this apparent contradiction to the statistical guarantee
to be the result of a very small sample size, allowing statistical
variation about the average value of β∗

all to become visible.

B. Packet Overhead

Classic traceroute sends a fixed three probes per hop, which
helps cap overhead. With adaptive probing, the number of
probes sent is less predictable. It depends on the numbers of
paths, load balancers, and non-responses, not only path length.
Fig. 6 gives the CDF of the total number of packets sent
to trace each route, including those without load balancing.
This includes the probes sent during the interface enumeration
phase, the classification phase, and all necessary retransmis-
sions. We plot these results for the MDA with various bounds
and for classic traceroute. As expected, classic traceroute sends
a relatively low number of packets, with a mean of 61 (for a
route with 20 hops) and a maximum of 90 packets. For the
MDA, even with an unstrict bound (β∗

all = 0.50), the mean

 0

 0.2

 0.4

 0.6

 0.8

 1

1 s 10 s 1 min 10 min

C
D

F
 o

f r
ou

te
s

0.01
0.05
0.25
0.50

classic

Fig. 7. Time overhead for the MDA (log scale), with various bounds β∗all,
and for classic traceroute.

nearly quadruples to 216 packets and the maximum is 1,027.
With a relatively strict bound (β∗

all = 0.01) the mean becomes
348 and the maximum 1,334. However, this maximum number
is rare. The MDA traces 90% of routes with fewer than 468
packets for β∗

all = 0.01 (290 for β∗
all = 0.50).

We conclude that traceroute overhead increases signifi-
cantly with the introduction of the MDA. This is not to
say, though, that individual traceroutes present a congestion
concern for traditional wired links. A back-of-the-envelope
calculation for β∗

all = 0.05 indicates bandwidths of 880 bps for
probes and 1,288 bps for replies, which is minuscule compared
to today’s link capacities. However, peaks of probe emissions
might cause problems because of rate limiting by routers. We
discuss this concern further in Sec. V-D. Scenarios might also
arise in which overhead becomes a concern because of either
unusually low link capacities or unusually high numbers of
simultaneous traceroutes.

C. Time Overhead

A long route trace duration increases the risk that a routing
change will cause an inaccurate inference. Also, long traces
are a problem for individual users who use traceroute for
troubleshooting and expect results in real time.

Fig. 7 plots the CDF of tracing time (in log scale) for all
multipath routes, for the MDA with various failure bounds and
for classic traceroute. Classic traceroute takes less than 10s
for half of the routes and 23s in the worst case (a forwarding
loop). It terminates quickly because the time depends only on
the RTT to each hop, the path length, and the number of non-
responsive hops (requiring a timeout expiry before sending
the next probe). The MDA takes more time to complete. For
β∗

all = 0.01, it takes more than one minute to trace more
than one half of the routes, and we encountered a maximum
probing time of over ten minutes! Even with relaxed bounds,
the MDA takes considerably longer than classic traceroute.

Delays can be shortened to a single RTT for classic tracer-
oute by using an a priori maximum hop count and sending
all probes in parallel. While the MDA does lend itself to such
improvement through parallelism, its adaptive nature requires
feedback from initial probes, or timeouts, to determine hop

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100

C
D

F
 o

f r
ou

te
s

0.01
0.05
0.25
0.50

Fig. 8. Number of retransmissions by the MDA (log scale), with various
bounds β∗all.

counts and flow identifiers for subsequent probes. As a result,
some of these delays are compressible only if one is willing
to incur large increases in probing overhead to anticipate a
wide range of possible probing outcomes with high probability.
Our results indicate that further work is required on reducing
delays in multipath route probing.

D. Retransmissions

Retransmissions after a timeout are an important component
of both overhead and delay for the MDA. Fig. 8 shows the
CDF for the number of retransmissions. Classic traceroute
does not retransmit, so it does not appear in the plot.

Retransmissions are fairly common, being triggered for
45% of routes when β∗

all = 0.50, and this portion increases
as the bounds get stricter. The increase is doubtless due
to larger numbers of probes resulting in greater ICMP rate
limiting by routers. It is natural, therefore, to ask whether these
retransmissions help.

To answer this question, we compared the failure rates for
obtaining responses with and without retransmission. With re-
transmissions, of 106,162 hops probed, no reply was obtained
from 14.3% of them. Disabling retransmissions, the portion of
non-responses only increased a small amount, to 17.4%. This
indicates that most non-responses are the result of anonymous
routers [19], which drop all traceroute probes. The lesson
we draw is that retransmissions have a limited benefit. In
situations that are sensitive to probing or delay overhead, it
may be best to avoid them, at a small cost in completeness.

VI. RELATED WORK

Traceroute is the basis of many projects in internet map-
ping [5], [8], [12], [16]. All of these studies aim to have
internet maps as complete as possible by tracing from multiple
sources to multiple destinations. There is also a non-peer-
reviewed work that looks at the trade-off between complete-
ness and low overhead when tracing from a single source to
multiple destinations [6]. In contrast, our work addresses the
completeness of the topology between a single source and a
single destination, specifically under load balancing.

Although there has been considerable work on the design
of efficient load balancers [7], [15], load balancing in the

internet is still under-documented. Huffaker et al. [9] mention
it as a potential problem, and it is likely the cause of what
Paxson [11] calls route fluttering. Recently, TCP Sidecar
[13] proposed to use the IP “Record Route” option to trace
through load balancers. The work on load-balanced paths is
also close to prior work on path diversity [17], [18], as the
MDA measures (at least partially) the path diversity natively
provided by the internet.

This paper grows out of our earlier work on Paris tracer-
oute [1]–[3]. The original Paris traceroute paper [1] introduced
the idea, which we use here, of fixing the flow identifier
for all probes of a path, in order to report precise routes
under per-flow load balancing. We developed the MDA for
a measurement paper that followed [2], in order to study the
prevalence of load-balanced paths in the internet. That paper
made use of the MDA as defined in a workshop paper [3]
that provided the first algorithmic statement and analysis of
the MDA. That paper presented the first version of the model
described in Sec. II, which this paper completes in three ways:
providing a more rigorous derivation of significance levels for
finding an individual node’s successor nodes, going beyond
significance levels to the more important failure probabilities
and how they may be controlled, and extending statistical
guarantees from the node level to the path level. The MDA,
as described in Sec. III, is updated from the workshop version
in light of the above improvements. Its basic structure remains
the same, but the number of probes sent can now be calibrated
according to the new statistical criteria, driven by a new input
parameter: a bound of the probability of failing to discover
the entire multipath route. We have also added mechanisms to
deal with unresponsive routers, and for identifying per-packet
load balancers and routing changes.

VII. CONCLUSION

Our study represents a major advance for traceroute users.
Instead of blindly using the default policy of sending three
probes per hop, users will now be able to configure their
probing algorithm with the knowledge of how to trade off
the completeness of multipath routes against low probing
overhead. Our model of multipath route discovery allows us
to compute the number of probes to send to find all successors
of a node with rigorous statistical guarantees. Our significance
level analysis linked to a bounded failure probability provides
tunable auto-calibration so the algorithm can provide mean-
ingful measures of confidence, and guarantees, conditional
on what it experiences. We proposed the Multipath Detection
Algorithm (MDA), a traceroute-based probing algorithm that
brings the idealized discovery algorithm from the model to
reality. Our experiments showed that classic traceroute misses
at least one link for more than 80% of multipath routes,
whereas the MDA’s adaptive probing, even with a maximum
failure probability of 50%, misses links in only 6% of cases.
This greater route knowledge comes at the cost of higher
probing overhead. In extreme cases, the MDA may send more
than a thousand probes to find all links of the multipath route
when failure is bounded at 1%.

We see a number of possible extensions to the MDA. Better
knowledge of the hashing functions used by per-flow load bal-
ancers [4] should make it possible to reduce probing overhead,
with the possibility to revert to the MDA in cases where no
predictable pattern can be identified with high certainty. There
is considerable scope for improving the current (loose) failure
bound, thereby saving probes, and both the significance level
and failure analyses open up new avenues for trading off and
optimizing performance against probe budget. Another open
question is how to accurately trace multipath routes past per-
packet load balancers.

ACKNOWLEDGMENTS

The Paris traceroute tool was developed with financial
support from the French CNRS, as part of its contribution to
the European Commission-sponsored OneLab project. We are
grateful to Xavier Cuvellier, Fabien Viger, Matthieu Latapy,
and to Clémence Magnien for their contributions to the Paris
traceroute project.

REFERENCES

[1] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Lat-
apy, C. Magnien, and R. Teixeira. Avoiding traceroute anomalies
with Paris traceroute. In Proc. ACM SIGCOMM Internet Measurement
Conference, IMC, October 2006.

[2] B. Augustin, T. Friedman, and R. Teixeira. Measuring Load-balanced
Paths in the Internet. In Proc. ACM SIGCOMM Internet Measurement
Conference, IMC, October 2007.

[3] B. Augustin, T. Friedman, and R. Teixeira. Multipath Tracing with
Paris Traceroute. In Proc. IEEE Workshop on End-to-End Monitoring,
E2EMON, May 2007.

[4] Z. Cao, Z. Wang, and E. W. Zegura. Performance of hashing-based
schemes for internet load balancing. In Proc. IEEE Infocom, 2000.

[5] Cooperative Association for Internet Data Analysis. Skitter.
http://www.caida.org/tools/measurement/skitter/, January 2000.

[6] B. Donnet, P. Raoult, and T. Friedman. Efficient route tracing from a
single source. arXiv preprint cs.NI/0605133 v1, May 2006.

[7] A. Elwalid, C. Jin, S. H. Low, and I. Widjaja. MATE: MPLS adaptive
traffic engineering. In Proc. IEEE Infocom, 2001.

[8] R. Govindan and H. Tangmunarunkit. Heuristics for internet map
discovery. In Proc. IEEE Infocom, March 2000.

[9] B. Huffaker, D. Plummer, D. Moore, and k claffy. Topology discovery
by active probing. In Proc. Symposium on Applications and the Internet,
Jan. 2002.

[10] V. Jacobson. traceroute, February 1989.
[11] V. Paxson. End-to-end internet packet dynamics. IEEE/ACM Trans.

Networking, 7(3):277–292, June 1999.
[12] Y. Shavitt and E. Shir. DIMES: Let the internet measure itself. ACM

SIGCOMM Computer Communication Review, 35(5):71 – 74, October
2005.

[13] R. Sherwood and N. Spring. Touring the Internet in a TCP Sidecar. In
Proc. ACM SIGCOMM Internet Measurement Conference, IMC, October
2006.

[14] S. Silvey. Statistical Inference. Chapman & Hall, 1975.
[15] S. Sinha, S. Kandula, and D. Katabi. Harnessing TCPs Burstiness using

Flowlet Switching. In Proc. SIGCOMM Workshop on Hot Topics in
Networking, HotNets, November 2004.

[16] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies
with Rocketfuel. In Proc. ACM SIGCOMM, August 2002.

[17] R. Teixeira, K. Marzullo, S. Savage, and G. M. Voelker. In Search of
Path Diversity in ISP Networks. In Proc. ACM SIGCOMM Internet
Measurement Conference, IMC, October 2003.

[18] X. Yang and D. Wetherall. Source Selectable Path Diversity via Routing
Deflections. In Proc. ACM SIGCOMM, August 2006.

[19] B. Yao, R. Viswanathan, F. Chang, and D. Waddington. Topology
inference in the presence of anonymous routers. In Proc. IEEE Infocom,
April 2003.

